
Efficient, Accurate and Stable Gradients for
Neural Differential Equations

James Foster

University of Bath

Joint with Sam McCallum (Bath)

Outline

1 Neural Ordinary Differential Equations

2 Reversible ODE solvers

3 Towards more general reversible solvers

4 Preliminary experiments

5 Conclusion and future work

6 References

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 0 / 30

What is a neural differential equation?

These are differential equations where the vector field is parametrised
as a neural network.

Standard example: Neural ODEs [1], due to Chen et al. (NeurIPS 2018).

dy
dt

= fθ(t, y(t)),

y(0) = y0,

where fθ can be any neural network (feedforward, convolutional, etc).

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 1 / 30

Examples of neural ordinary differential equations
A simple example: The SIR model for modelling infectious diseases

d
dt

s(t)
i(t)
r(t)

 =

 −bs(t)i(t)
bs(t)i(t)− ki(t)

ki(t)

 ,

where b and k are parameters that are learnt from data.

What is a neural differential equation anyway?
(And why you might already be using them.)

Classical example of a ‘neural’ differential equation: the SIR model.

d
dt

s(t)
i(t)
r(t)

 =

 −b s(t) i(t)
b s(t) i(t)− k i(t)

k i(t)

b and k are parameters learnt from data.

An ODE solve produces a computation graph, that we can backpropagate
through: train b and k via SGD.

Neural Differential Equations Patrick Kidger 5

At the other extreme, Neural ODEs have achieved 70% accuracy for
ImageNet classification [2] (competitive with a well-tuned ResNet).
James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 2 / 30

How to train your Neural ODE (backpropagation)

Step 1. Define a differentiable scalar loss function based on the data

L
(
y(t)

)
= L

(
ODESolve

(
y(0), t, fθ

))
.

Step 2. As “ODESolve” is a composition of differentiatiable operations,
we can compute dL

dθ using automatic differentiation / backpropagation.
Step 3. Apply stochastic gradient descent (SGD) with dL

dθ to minimize L.

However...

When applying backpropagation, we store the full ODE trajectory {ytk}.

Thus, the memory cost scales linearly with the number of steps / depth.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 3 / 30

How to train your Neural ODE (adjoint method)

Step 1. Define a differentiable scalar loss function based on the data

L
(
y(t)

)
= L

(
ODESolve

(
y(0), t, fθ

))
.

Step 2. Compute L
(
y(T)

)
via ODE solver. Then a(t) := ∂L(y(t))

∂y(t) satisfies

da(t)
dt

= −a(t)T
∂fθ

(
t, y(t)

)
∂y

.

Step 3. Solve the above adjoint equation via ODE solver, and evaluate

dL
dθ

=

∫ T

0
a(t)T

∂fθ
(
t, y(t)

)
∂θ

dt.

Step 4. Apply stochastic gradient descent (SGD) with dL
dθ to minimize L.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 4 / 30

Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.

λ
(t
)

t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.

7

Figure: Recurrent Neural Network

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.

λ
(t
)

t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.

7

Figure: Neural ODE

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.

λ
(t
)

t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.

7

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 5 / 30

Why Neural ODEs and the adjoint method?

• Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

• Continuous time, so well suited for handling (irregular) time series

• Choice of ODE solver allows trade-offs between accuracy and cost

• Adjoint method is memory efficient! (i.e. doesn’t scale with depth)

However...

Solving the ODE and its adjoint equation gives inexact gradients.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 6 / 30

Outline

1 Neural Ordinary Differential Equations

2 Reversible ODE solvers

3 Towards more general reversible solvers

4 Preliminary experiments

5 Conclusion and future work

6 References

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 6 / 30

Reversible ODE solvers

We can compute gradients accurately using backpropagation – but that
requires us to have the numerical ODE solution for the backwards pass.

In [2], it was shown that the numerical ODE solution can be dynamically
recomputed (i.e. constant memory cost) using a reversible ODE solver.

Published as a conference paper at ICLR 2021

Table 1: Comparison between different methods for gradient estimation in continuous case. MALI achieves
reverse accuracy, constant memory w.r.t number of solver steps in integration, shallow computation graph and
low computation cost.

Naive Adjoint ACA MALI
Computation NzNf ×Nt ×m× 2 NzNf × (Nt +Nr)×m NzNf ×Nt × (m+ 1) NzNf ×Nt × (m+ 2)

Memory NzNf ×Nt ×m NzNf Nz(Nf +Nt) Nz(Nf + 1)
Computation graph depth Nf ×Nt ×m Nf ×Nr Nf ×Nt Nf ×Nt

Reverse accuracy 3 7 3 3

Figure 1: Illustration of numerical solver in
forward-pass. For adaptive solvers, for each step
forward-in-time, the stepsize is recursively ad-
justed until the estimated error is below prede-
fined tolerance; the search process is represented
by green curve, and the accepted step (ignore the
search process) is represented by blue curve.

Figure 2: In backward-pass, the adjoint method
reconstructs trajectory as a separate IVP. Naive,
ACA and MALI track the forward-time trajectory,
hence are accurate. ACA and MALI only back-
propagate through the accepted step, while naive
method backpropagates through the search pro-
cess hence has deeper computation graphs.

of the gradient in the continuous case is

dL

dθ
= −

∫ 0

T

a(t)>
∂f(z(t), t, θ)

∂θ
dt (2)

da(t)

dt
+
(∂f(z(t), t, θ)

∂z(t)

)>
a(t) = 0 ∀t ∈ (0, T), a(T) =

∂L

∂z(T)
(3)

where a(t) is the “adjoint state”. Detailed proof is given in (Pontryagin, 1962). In the next section
we compare different numerical implementations of this analytical form.

2.3 NUMERICAL IMPLEMENTATIONS IN THE LITERATURE FOR THE ANALYTICAL FORM

We compare different numerical implementations of the analytical form in this section. The forward-
pass and backward-pass of different methods are demonstrated in Fig. 1 and Fig. 2 respectively.
Forward-pass is similar for different methods. The comparison of backward-pass among different
methods are summarized in Table. 1. We explain methods in the literature below.

Naive method The naive method saves all of the computation graph (including search for optimal
stepsize, green curve in Fig. 2) in memory, and backpropagates through it. Hence the memory cost is
NzNf ×Nt×m and depth of computation graph are Nf ×Nt×m, and the computation is doubled
considering both forward and backward passes. Besides the large memory and computation, the
deep computation graph might cause vanishing or exploding gradient (Pascanu et al., 2013).

Adjoint method Note that we use “adjoint state equation” to refer to the analytical form in Eq. 2
and 3, while we use “adjoint method” to refer to the numerical implementation by Chen et al. (2018).
As in Fig. 1 and 2, the adjoint method forgets forward-time trajectory (blue curve) to achieve
memory cost NzNf which is constant to integration time; it takes the end-time state (derived from
forward-time integration) as the initial state, and solves a separate IVP (red curve) in reverse-time.

Theorem 2.1. (Zhuang et al., 2020) For an ODE solver of order p, the error of
the reconstructed initial value by the adjoint method is

∑N−1
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) +

3

Published as a conference paper at ICLR 2021

Table 1: Comparison between different methods for gradient estimation in continuous case. MALI achieves
reverse accuracy, constant memory w.r.t number of solver steps in integration, shallow computation graph and
low computation cost.

Naive Adjoint ACA MALI
Computation NzNf ×Nt ×m× 2 NzNf × (Nt +Nr)×m NzNf ×Nt × (m+ 1) NzNf ×Nt × (m+ 2)

Memory NzNf ×Nt ×m NzNf Nz(Nf +Nt) Nz(Nf + 1)
Computation graph depth Nf ×Nt ×m Nf ×Nr Nf ×Nt Nf ×Nt

Reverse accuracy 3 7 3 3

Figure 1: Illustration of numerical solver in
forward-pass. For adaptive solvers, for each step
forward-in-time, the stepsize is recursively ad-
justed until the estimated error is below prede-
fined tolerance; the search process is represented
by green curve, and the accepted step (ignore the
search process) is represented by blue curve.

Figure 2: In backward-pass, the adjoint method
reconstructs trajectory as a separate IVP. Naive,
ACA and MALI track the forward-time trajectory,
hence are accurate. ACA and MALI only back-
propagate through the accepted step, while naive
method backpropagates through the search pro-
cess hence has deeper computation graphs.

of the gradient in the continuous case is

dL

dθ
= −

∫ 0

T

a(t)>
∂f(z(t), t, θ)

∂θ
dt (2)

da(t)

dt
+
(∂f(z(t), t, θ)

∂z(t)

)>
a(t) = 0 ∀t ∈ (0, T), a(T) =

∂L

∂z(T)
(3)

where a(t) is the “adjoint state”. Detailed proof is given in (Pontryagin, 1962). In the next section
we compare different numerical implementations of this analytical form.

2.3 NUMERICAL IMPLEMENTATIONS IN THE LITERATURE FOR THE ANALYTICAL FORM

We compare different numerical implementations of the analytical form in this section. The forward-
pass and backward-pass of different methods are demonstrated in Fig. 1 and Fig. 2 respectively.
Forward-pass is similar for different methods. The comparison of backward-pass among different
methods are summarized in Table. 1. We explain methods in the literature below.

Naive method The naive method saves all of the computation graph (including search for optimal
stepsize, green curve in Fig. 2) in memory, and backpropagates through it. Hence the memory cost is
NzNf ×Nt×m and depth of computation graph are Nf ×Nt×m, and the computation is doubled
considering both forward and backward passes. Besides the large memory and computation, the
deep computation graph might cause vanishing or exploding gradient (Pascanu et al., 2013).

Adjoint method Note that we use “adjoint state equation” to refer to the analytical form in Eq. 2
and 3, while we use “adjoint method” to refer to the numerical implementation by Chen et al. (2018).
As in Fig. 1 and 2, the adjoint method forgets forward-time trajectory (blue curve) to achieve
memory cost NzNf which is constant to integration time; it takes the end-time state (derived from
forward-time integration) as the initial state, and solves a separate IVP (red curve) in reverse-time.

Theorem 2.1. (Zhuang et al., 2020) For an ODE solver of order p, the error of
the reconstructed initial value by the adjoint method is

∑N−1
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) +

3

Figure: Illustration of a reversible ODE solver called “ALF” (taken from [2])

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 7 / 30

Reversible ODE solvers

Definition (ODE solver with order of convergence α)
We say an ODE solver Φ : R× Rd 7→ R converges with order α > 0 if

‖x(h)− Φh(x)‖ ≤ C|h|α+1,

where x(h) is the solution at time |h| of an ODE started at x(0) := x,

x ′ = f(x) if h ≥ 0, or x ′ = −f(x) if h < 0.

Definition (Symmetric reversibility)
We say an ODE solver Φ is symmetric reversible if Φ−h(Φh(x)) = x.

Example
For a general f : Rd → Rd, Euler’s method is not symmetric reversible.

(x+ fθ(x)h)− fθ(x+ fθ(x)h)h 6= x

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 8 / 30

Examples of reversible solvers

Example (Asynchronous Leapfrog Integrator (ICLR 2021))

Xn+ 1
2
:= Xn +

1

2
Vnh,

Vn+1 := 2f
(
Xn+ 1

2

)
− Vn ,

Xn+1 := Xn + f
(
Xn+ 1

2

)
h,

where X0 := x(0) and V0 := f(X0).

Remark (Symmetric reversibility)

Xn+ 1
2
= Xn+1 −

1

2
Vn+1h,

Vn = 2f
(
Xn+ 1

2

)
− Vn+1 ,

Xn = Xn+1 − f
(
Xn+ 1

2

)
h.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 9 / 30

Examples of reversible solvers

Example (Reversible Heun’s method (NeurIPS 2021))

Yn+1 := 2Xn − Yn + f(Yn)h,

Xn+1 := Xn +
1

2

(
f(Yn) + f(Yn+1)

)
h,

where X0 = Y0 = x(0).

Remark (Symmetric reversibility)

Yn = 2Xn+1 − Yn+1 − f(Yn+1)h,

Xn = Xn+1 −
1

2

(
f(Yn+1) + f(Yn)

)
h.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 10 / 30

Examples of reversible solvers

Both methods...

• achieve reversibility by introducing extra state.

• have second order convergence with fixed step sizes.

• have a potentially unstable term of the form 2A− B.

• have worked in large-scale applications:
– A Neural ODE with the asynchronous leapfrog integrator achieved
comparable performance to a ResNet-18 (≈ 11million parameters)
for classification on the ImageNet dataset [2].

– A Neural SDE with the reversible Heun scheme was successfully
used for turbulence modelling (≈ 4.6million parameters) [4].

• can be defined for both ODEs and SDEs. However, in the SDE case,
we could only prove convergence for the Reversible Heun scheme.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 11 / 30

Examples of reversible solvers

However, [5] and [6] report that the reversible Heun method was too
unstable for their applications.

Asynchronous Leapfrog Integrator Reversible Heun method

Xn+ 1
2
:= Xn + 1

2Vnh,

Vn+1 := 2f
(
Xn+ 1

2

)
− Vn ,

Xn+1 := Xn + 1
2Vn+1h.

Yn+1 := 2Xn − Yn + f(Yn)h,
Xn+1 := Xn + 1

2

(
f(Yn) + f(Yn+1)

)
h.

We believe that any instability is then amplified by these solvers when
• Vn and f(Xn) drift apart (for ALF)
• Xn and Yn drift apart (for RH)

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 12 / 30

Outline

1 Neural Ordinary Differential Equations

2 Reversible ODE solvers

3 Towards more general reversible solvers

4 Preliminary experiments

5 Conclusion and future work

6 References

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 12 / 30

Towards more general reversible solvers

Given an ODE solver Φh , we define the map Ψh(x) := Φh(x)− x so that

‖x(h)− (x+Ψh(x))‖ ≤ C|h|α+1,

where x(h) is the solution at time h of the ODE started at x(0) := x.

Definition (Proposed reversible ODE solver [7])
We construct a numerical solution {(Yn, Zn)}n≥0 by Y0 = Z0 = x(0) and

Yn+1 := λYn + (1− λ)Zn +Ψh(Zn),

Zn+1 := Zn −Ψ−h(Yn+1),

where h > 0 is the step size and λ ∈ (0, 1] is a “coupling” parameter.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 13 / 30

Towards more general reversible solvers

This approach is based on two ideas:
• Extra state allows for a reversible computation graph.
(e.g. previous reversible solvers and coupling layers in neural nets)

(a) yn

zn

Ψh

+ +

Ψ-h

− zn+1

yn+1
×λ

×(1− λ)

(b) yn

zn

Ψh

− −

Ψ-h

+ zn+1

yn+1
×λ−1

×(1− λ)

Figure: (a) Forwards ODE solve. (b) Backward ODE solve.

• ODE solvers can be applied with positive and negative step sizes.

x(h) ≈ Φh(x(0)) “⇒” x(0) ≈ Φ−h(x(h))
“⇒” x(0) ≈ x(h) + Ψ−h(x(h))
“⇒” x(h) ≈ x(0)−Ψ−h(x(0) + Ψh(x(0))).

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 14 / 30

Towards more general reversible solvers

Recall the new solver is
Yn+1 := λYn + (1− λ)Zn +Ψh(Zn),

Zn+1 := Zn −Ψ−h(Yn+1).

The first key property to note is that this is algebraically reversible since

Zn := Zn+1 +Ψ−h(Yn+1),

Yn := λ−1Yn+1 + (1− λ−1)Zn − λ−1Ψh(Zn).

Secondly, we introduce λ ∈ (0, 1] so that Yn and Zn stay close together,

Yn+1 − Zn+1 = λ(Yn − Zn) + Ψh(Zn) + Ψ−h(Yn+1)︸ ︷︷ ︸
small if Zn ≈ x(tn) and Yn+1 ≈ x(tn+1)

.

But if λ is too small, it may cause instabilities on the backwards solve.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 15 / 30

Towards more general reversible solvers

Theorem (Main result; any ODE solver can made reversible [7])
Suppose Ψ corresponds to an α-order numerical method for the ODE

x ′ = f(x),

where t ∈ [0, T] for a fixed T. Then under a Lipschitz assumption on Ψ,
there exists constants C,hmax > 0 such that∥∥Yk − x(tk)

∥∥ ≤ Chα, (1)

for all k ∈ {0, 1, · · · ,N} where h ∈ (0, hmax] , tk := kh ∈ [0, T] and

Yn+1 := λYn + (1− λ)Zn +Ψh(Zn),

Zn+1 := Zn −Ψ−h(Yn+1),

with λ ∈ (0, 1] and Y0 = Z0 = x(0).

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 16 / 30

Stability of reversible ODE solvers

Although we can construct arbitrarily high order ODE reversible solvers,
we have not yet addressed the main challenges which concern stability.

Definition (A-stability region)
Consider the following linear ODE,

y ′ = αy, (2)
y(0) = 1,

where α ∈ C with Re(α) < 0. A numerical solution Y = {Yk}k≥0 of (2)
is said to be A-stable at α if Yk → 0 as k → ∞. The stability region is

R = {α ∈ C : Re(α) < 0 and Y = {Yk} is A-stable at α}.

The Asynchronous Leapfrog Integrator and Reversible Heun method
are not A-stable (for any α ∈ C).

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 17 / 30

Stability of reversible ODE solvers

Numerically computing stability regions gives some promising results:

Figure: Stability regions for different reversible schemes (h = 1 and λ = 0.8).

We also see that decreasing λ ∈ (0, 1] increases the stability region.
However, if λ is too small, then the backwards solve may be unstable.

Theoretically, we have only been able to find a closed-form expression
for the real part of these stability regions [7].

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 18 / 30

Outline

1 Neural Ordinary Differential Equations

2 Reversible ODE solvers

3 Towards more general reversible solvers

4 Preliminary experiments

5 Conclusion and future work

6 References

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 18 / 30

Preliminary experiments

We first generate synthetic time series data {x(ti)}i≥0 by simulating
Chandrasekhar’s white dwarf equation,

dx
dt

= v,

dv
dt

= −2

t
v−

(
x2 − C

) 3
2 ,

where (x(0), v(0)) := (1, 0).

We then train a Neural ODE using {x(ti)} to identify the above system.

In particular, we will compare against backpropagation with online
recursive checkpointing. In these examples, we will set λ = 0.99.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 19 / 30

Preliminary experiments

Method Loss Time Memory
(×10−3) (s) (effective checkpoints)

Reversible 0.122 1.90±0.04 2

Checkpointing 0.122 282.43±16.73 2
Checkpointing 0.122 31.41±0.47 4
Checkpointing 0.122 10.14±0.16 8
Checkpointing 0.122 8.52±0.47 16
Checkpointing 0.122 7.61±0.12 32
Checkpointing 0.122 4.87±0.07 44

Table: Time and memory cost incurred when training a Neural ODE to identify
Chandrasekhar’s white dwarf equation (1000 time and training steps).

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 20 / 30

Preliminary experiments

Figure: Combined runtime of a forwards solve and backpropagation through
the midpoint ODE solver over n time steps. Here, we compare against
backpropagation with online recursive checkpointing at c checkpoints.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 21 / 30

Preliminary experiments

Figure: Convergence of original (solid) and reversible (dashed) ODE solvers.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 22 / 30

Preliminary experiments

We have also tested our approach on a continuous normalising flow [8]
and a neural controlled differential equation [9].

In both examples, we see similar performance compared to standard
backpropagation – but with much less memory required for training.

Solver −E
[
logpθ

]
Memory Usage (GB)

Reversible Backprop Reversible Backprop

Midpoint 0.888 0.891 0.563 3.922
RK4 0.890 0.890 0.647 7.467
Dopri5 0.890 0.891 0.704 12.79

Table: Continuous Normalising Flow on the two moons dataset [10].

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 23 / 30

Preliminary experiments

We have also tested our approach on a continuous normalising flow [8]
and a neural controlled differential equation [9].

In both examples, we see similar performance compared to standard
backpropagation – but with much less memory required for training.

Solver Accuracy (%) Memory Usage (GB)
Reversible Backprop Reversible Backprop

Midpoint 78.4±5.5 78.9±6.7 0.434 1.09
RK4 79.0± 5.9 76.4±5.4 0.468 1.86
Dopri5 80.1±6.9 77.9±6.7 0.523 3.01

Table: Neural CDE on the CharacterTrajectories dataset [11].

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 23 / 30

Outline

1 Neural Ordinary Differential Equations

2 Reversible ODE solvers

3 Towards more general reversible solvers

4 Preliminary experiments

5 Conclusion and future work

6 References

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 23 / 30

Conclusion

• Among the recent advances in neural differential equations,
reversible solvers have seen utility due to the accurate and
memory-efficient gradients that they provide during training.

• However, the current reversible NDE solvers have stability issues.
We believe that this instability is amplified by the “2A− B” terms.

• We propose an approach in which an explicit ODE solver can be
converted to a reversible one with the same order of convergence.
Although this requires twice the function evaluations per step, we
often observe faster training times due to the memory reduction.

• The reversible solvers produce stability regions and have shown
promising empirical results – including against checkpointing.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 24 / 30

Future work

• Implementation of our method into the ODE/SDE/CDE library
“Diffrax” (github.com/patrick-kidger/diffrax):

• Applications of reversible solvers for learning time-evolving PDEs
(which can easily have a high memory footprint).

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 25 / 30

https://github.com/patrick-kidger/diffrax

Thank you
for your attention!

and our preprint can be found at:

Sam McCallum and James Foster. Efficient, Accurate and Stable
Gradients for Neural ODEs, arxiv:2410.11648, 2024.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 26 / 30

https://arxiv.org/abs/2410.11648

Outline

1 Neural Ordinary Differential Equations

2 Reversible ODE solvers

3 Towards more general reversible solvers

4 Preliminary experiments

5 Conclusion and future work

6 References

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 26 / 30

References I

R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. Duvenaud.
Neural Ordinary Differential Equations, Neural Information
Processing Systems, 2018.

J. Zhuang, N. C. Dvornek, S. Tatikonda and J. S. Duncan. MALI:
A memory efficient and reverse accurate integrator for Neural ODEs,
International Conference on Learning Representations, 2021.

C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R.
Supekar, D. Skinner, A. Ramadhan and A. Edelman.
Universal Differential Equations for Scientific Machine Learning,
arXiv:2001.04385, 2020.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 27 / 30

https://arxiv.org/abs/2001.04385

References II

A. Boral, Z. Yi Wan, L. Zepeda-Núñez, J. Lottes, Q. Wang, Y. Chen,
J. R. Anderson and F. Sha. Neural Ideal Large Eddy Simulation:
Modeling Turbulence with Neural Stochastic Differential Equations,
Neural Information Processing Systems, 2023.

Q. Zhang and Y. Chen. Path Integral Sampler: A Stochastic Control
Approach For Sampling, International Conference on Learning
Representations, 2022.

A. Howe. Possible issue with ReversibleHeun solver instability,
github.com/patrick-kidger/diffrax/issues/417, 2024.

S. McCallum and J. Foster. Efficient, Accurate and Stable Gradients
for Neural ODEs, arXiv:2410.11648, 2024.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 28 / 30

https://github.com/patrick-kidger/diffrax/issues/417
https://arxiv.org/abs/2410.11648

References III

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever,
D. Duvenaud. NFFJORD: Free-form Continuous Dynamics for
Scalable Reversible Generative Models, International Conference
on Learning Representations, 2019.

P. Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled
Differential Equations for Irregular Time Series, Neural Information
Processing Systems, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, et al. Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research, 2011.

A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam and E. Keogh. The UEA multivariate time series
classification archive, 2018, arXiv:1811.00075, 2018.

James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 29 / 30

https://arxiv.org/abs/1811.00075

Examples of reversible solvers
Turbulence modelling is computationally demanding due to the fine
mesh and steps used to approximate the PDE. A transformer-based
Neural SDE model was recently developed for such simulations [4],
and was numerically discretized using the Reversible Heun method.

Figure 3: Root mean squared error (RMSE) over the first 1000 steps (first two columns) and the
turbulent kinetic energy (TKE) spectrum E(k) averaged over the first 2500 steps (right two columns)
of two independent test trajectories unseen during training or validation. niLES has an improved
ability to capture the long term statistics accurately compared to both implicit LES and deterministic
NN. The energy buildup in the small scales (large wavenumber) in the deterministic NN model
eventually leads to unstable trajectories.

(a) (b) (c) (d)

Figure 4: Comparison between rollout predictions after 800 LES steps on a held-out trajectory.
Velocities in the x (top row) and y (bottom row) directions respectively. Snapshots of filtered DNS
(reference) (a), niLES (b), implicit LES (c) and deterministic NN models (d). The niLES captures
several finer scale features of the flow consistent with the reference filtered DNS trajectory. The
implicit LES has an overall smoothing effect and some turbulent structures are not captured. The
deterministic NN LES shows artifacts which indicate instability.

general. We loosely divide the related works into four categories, placing particular emphasis on the
treatment of effects caused by unresolved (typically small-scaled) variables.

Classical turbulence methods primarily relies on phenomenological arguments to derive an eddy
viscosity term [46], which is added to the physical viscosity and accounts for the dissipation of energy
from large to small scales. The term may be static [4], time-dependent [74, 29] or multi-scale [37, 38].

Data-driven surrogates often do not model the closure in an explicit way. However, by learning
the dynamics directly from data at finite resolution, the effects of unresolved variables and scales
are expected to be captured implicitly and embedded in the machine learning models. A variety
of architectures have been explored, including ones based on multi-scaled convolutional neural
networks [68, 80, 75], transformers [11], graph neural networks [71, 47] and operator learning [63].

Hybrid physics-ML contains a rich set of recent methods to combine classical numerical schemes and
deep learning models [59, 6, 45, 54, 22, 79, 56, 33]. The former is expected to provide a reasonable
baseline, while the latter specializes in capturing the interactions between modeled and unmodeled
variables that accurately represent high-resolution data. This yields cost-effective, low-resolution
methods that achieve comparable accuracy to more expensive simulations.

9

Figure 3: Root mean squared error (RMSE) over the first 1000 steps (first two columns) and the
turbulent kinetic energy (TKE) spectrum E(k) averaged over the first 2500 steps (right two columns)
of two independent test trajectories unseen during training or validation. niLES has an improved
ability to capture the long term statistics accurately compared to both implicit LES and deterministic
NN. The energy buildup in the small scales (large wavenumber) in the deterministic NN model
eventually leads to unstable trajectories.

(a) (b) (c) (d)

Figure 4: Comparison between rollout predictions after 800 LES steps on a held-out trajectory.
Velocities in the x (top row) and y (bottom row) directions respectively. Snapshots of filtered DNS
(reference) (a), niLES (b), implicit LES (c) and deterministic NN models (d). The niLES captures
several finer scale features of the flow consistent with the reference filtered DNS trajectory. The
implicit LES has an overall smoothing effect and some turbulent structures are not captured. The
deterministic NN LES shows artifacts which indicate instability.

general. We loosely divide the related works into four categories, placing particular emphasis on the
treatment of effects caused by unresolved (typically small-scaled) variables.

Classical turbulence methods primarily relies on phenomenological arguments to derive an eddy
viscosity term [46], which is added to the physical viscosity and accounts for the dissipation of energy
from large to small scales. The term may be static [4], time-dependent [74, 29] or multi-scale [37, 38].

Data-driven surrogates often do not model the closure in an explicit way. However, by learning
the dynamics directly from data at finite resolution, the effects of unresolved variables and scales
are expected to be captured implicitly and embedded in the machine learning models. A variety
of architectures have been explored, including ones based on multi-scaled convolutional neural
networks [68, 80, 75], transformers [11], graph neural networks [71, 47] and operator learning [63].

Hybrid physics-ML contains a rich set of recent methods to combine classical numerical schemes and
deep learning models [59, 6, 45, 54, 22, 79, 56, 33]. The former is expected to provide a reasonable
baseline, while the latter specializes in capturing the interactions between modeled and unmodeled
variables that accurately represent high-resolution data. This yields cost-effective, low-resolution
methods that achieve comparable accuracy to more expensive simulations.

9

Figure 3: Root mean squared error (RMSE) over the first 1000 steps (first two columns) and the
turbulent kinetic energy (TKE) spectrum E(k) averaged over the first 2500 steps (right two columns)
of two independent test trajectories unseen during training or validation. niLES has an improved
ability to capture the long term statistics accurately compared to both implicit LES and deterministic
NN. The energy buildup in the small scales (large wavenumber) in the deterministic NN model
eventually leads to unstable trajectories.

(a) (b) (c) (d)

Figure 4: Comparison between rollout predictions after 800 LES steps on a held-out trajectory.
Velocities in the x (top row) and y (bottom row) directions respectively. Snapshots of filtered DNS
(reference) (a), niLES (b), implicit LES (c) and deterministic NN models (d). The niLES captures
several finer scale features of the flow consistent with the reference filtered DNS trajectory. The
implicit LES has an overall smoothing effect and some turbulent structures are not captured. The
deterministic NN LES shows artifacts which indicate instability.

general. We loosely divide the related works into four categories, placing particular emphasis on the
treatment of effects caused by unresolved (typically small-scaled) variables.

Classical turbulence methods primarily relies on phenomenological arguments to derive an eddy
viscosity term [46], which is added to the physical viscosity and accounts for the dissipation of energy
from large to small scales. The term may be static [4], time-dependent [74, 29] or multi-scale [37, 38].

Data-driven surrogates often do not model the closure in an explicit way. However, by learning
the dynamics directly from data at finite resolution, the effects of unresolved variables and scales
are expected to be captured implicitly and embedded in the machine learning models. A variety
of architectures have been explored, including ones based on multi-scaled convolutional neural
networks [68, 80, 75], transformers [11], graph neural networks [71, 47] and operator learning [63].

Hybrid physics-ML contains a rich set of recent methods to combine classical numerical schemes and
deep learning models [59, 6, 45, 54, 22, 79, 56, 33]. The former is expected to provide a reasonable
baseline, while the latter specializes in capturing the interactions between modeled and unmodeled
variables that accurately represent high-resolution data. This yields cost-effective, low-resolution
methods that achieve comparable accuracy to more expensive simulations.

9

Figure: PDE simulation (left), Neural SDE (middle) and Neural network (right)
James Foster (University of Bath) Reversible solvers for NDEs 13 January 2024 30 / 30

	Neural Ordinary Differential Equations
	Reversible ODE solvers
	Towards more general reversible solvers
	Preliminary experiments
	Conclusion and future work
	References

