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What is a neural differential equation?

These are differential equations where the vector field is parametrised
as a neural network.

Standard example: Neural ODEs [1], due to Chen et al. (NeurIPS 2018).

Y ),
y(0) = yo,

where fy can be any neural network (feedforward, convolutional, etc).
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Examples of neural ordinary differential equations

A simple example: The SIR model for modelling infectious diseases

4 (S0 —bs(t)i(1)
— ([(t)) = (bs(z‘)z‘(t) ki(f)) ;
r(t) ki(1)

where b and k are parameters that are learnt from data.

Outputs

_____________________

At the other extreme, Neural ODEs have achieved 70% accuracy for
ImageNet classification [2] (competitive with a well-tuned ResNet).

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025



How to train your Neural ODE (backpropagation)

Step 1. Define a differentiable scalar loss function based on the data
L(y(t) =L <ODESolve(y(0), t fg)).

Step 2. As “ODESolve” is a composition of differentiable operations, we
can compute % using automatic differentiation / backpropagation.

Step 3. Apply stochastic gradient descent (SGD) with % to minimize L.

However...

When applying backpropagation, we store the full ODE trajectory {yz, }.

Thus, the memory cost scales linearly with the number of steps / depth.
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How to train your Neural ODE (adjoint method)
Step 1. Define a differentiable scalar loss function based on the data
L(y(t)) =L <ODESo/ve(y(0), t fg)).

Step 2. Compute L(y(T)) via ODE solver. Then a(t) := ag(yy(())) satisfies

da(t) A (t,y(1))
a =’ oy

Step 3. Solve the above adjoint equation via ODE solver, and evaluate

)
Zé:/() a(t)T(%(ggy(t)) dt

Step 4. Apply stochastic gradient descent (SGD) with dL to minimize L.
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Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

== Ground Truth
® Observation

== Prediction

= Extrapolation

Figure: Neural ODE
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Why Neural ODEs and the adjoint method?

Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

Continuous time, so well suited for handling (irregular) time series

Choice of ODE solver allows trade-offs between accuracy and cost

Adjoint method is memory efficient! (i.e. doesn’t scale with depth)

However...

Solving the ODE and its adjoint equation gives inexact gradients.
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Reversible ODE solvers

We can compute gradients accurately using backpropagation — but that
requires us to have the numerical ODE solution for the backwards pass.

In[2], it was shown that the numerical ODE solution can be dynamically
recomputed (i.e. constant memory cost) using a reversible ODE solver.
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Figure: Illustration of a reversible ODE solver called “MALI” (taken from [2])
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Reversible ODE solvers

Definition (ODE solver with order of convergence «)

We say an ODE solver @ : R x R? — R converges with order o > 0 if
Ix(h) = @p()]| < ClA|**,
where x(h) is the solution at time |h| of an ODE started at x(0) := x,

x"=f(x) if h>0, or x'=-f(x) if h<o.

Definition (Symmetric reversibility)
We say an ODE solver @ is symmetric reversible if ®_p(P®py(x)) = x.

Example

For a general f: R? — R, Euler’s method is not symmetric reversible.

(X4 fa(x)h) — fo(x + fo(X)h)h # x
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Examples of reversible solvers

Example (Asynchronous Leapfrog Integrator (ICLR 2021))

1
Xn_’_% = Xn + §Vnh7
Vn+1 = 2][(Xn+%) - Vna
1
Xny1 = Xn + §Vn+1 h,

where X := x(0) and Vp := f(Xo).

Remark (Symmetric reversibility)
1
Xty = Xnt1 = 5Vos1h,
Vo = 2f(X,y1) — Vo,

1
Xn = Xn+]_ - §Vnh
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Examples of reversible solvers

Example (Reversible Heun’s method (NeurIPS 2021))

Yn+1 = 2Xn — Yn +f(Yn)h,

Xas1 =X 3 (f(Va) +1(Vns 1))

where X = Yy = x(0).

Remark (Symmetric reversibility)

Yn = 2Xn-i-l - Yn+1 —f(yn—i-l)h,
1
Xn = Xnt1 — i(f(YnJrl) +f(Yn))h'
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Examples of reversible solvers

Both methods...

e achieve reversibility by introducing extra state.

have second order convergence with fixed step sizes.

have a potentially unstable term of the form 2A — B.

have worked in large-scale applications:

— A Neural ODE with the asynchronous leapfrog integrator achieved
comparable performance to a ResNet-18 (& 11 million parameters)
for classification on the ImageNet dataset [2].

— A Neural SDE with the reversible Heun scheme was successfully
used for turbulence modelling (~ 4.6 million parameters) [4].

can be defined for both ODEs and SDEs. However, in the SDE case,
we could only prove convergence for the Reversible Heun scheme.
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Examples of reversible solvers

However, [5] and [6] report that the reversible Heun method was too
unstable for their applications.

Asynchronous Leapfrog Integrator Reversible Heun method

X
e Yoyt :=2Xy — Yo + f(Ya)h,

Vier = 2f(X ) = Vi i X L) + (s
Xn+1 = Xn + %Vn+1h

1= Xf'l + %Vnh7
2

We believe that any instability is then amplified by these solvers when
e V, and f(X,) drift apart (for ALF)
e X, and Y, drift apart (for RH)
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Towards more stable reversible solvers

Given an ODE solver &, we define the map Wy (x) := ®x(x) — x so that
Ix(h) = (x+ Za(x)]| < Clh*H,

where x(h) is the solution at time h of the ODE started at x(0) := x.

Definition (Proposed reversible ODE solver [7])
We construct a numerical solution {(Ys,Zn)}a>0 by Yo = Zp = x(0) and

Yn+1 = )\Yn + (1 - )\)Zn + qlh(Zn)7
Zny1:=2Zp — ‘I/—h(yn—f—l)a

where h > 0 is the step size and A € (0, 1] is a “coupling” parameter.
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Towards more stable reversible solvers

This approach is based on two ideas:

e Extra state allows for a reversible computation graph.
(e.g. previous reversible solvers and coupling layers in neural nets)

xAL

A
(@  Un X—» e Ynt1 (b)  Yn ’ Ynt1
wy/ @ @ o\ ® @
Zn ./ C}_, Znt1 Zn + Zn41

Figure: (a) Forwards ODE solve. (b) Backward ODE solve.

e ODE solvers can be applied with positive and negative step sizes.

x(h) = @4(x(0)) "=" x(0) = ®_x(x(h))
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Towards more stable reversible solvers

Recall the new solveris
Yn+1 = )\Yn + (1 — )\)Zn + \I/h(Zn),
Zny1:=2p — \I’fh(YnJrl)-

The first key property to note is that this is algebraically reversible since
Zn =Znt1+ VY _p(Yns1),
Secondly, we introduce A € (0, 1] so that Y, and Z, stay close together,

Yot1 —Zny1 = AYn —Zn) + Yp(Zn) + U_p(Ynt1) -

small if Zn=x(th) and Y41 = x(th+1)

But if A is too small, it may cause instabilities on the backwards solve.
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Towards more stable reversible solvers

Theorem (Main result; any ODE solver can made reversible [7])
Suppose ¥ corresponds to an a-order numerical method for the ODE

where t € [0, T] for a fixed T. Then under a Lipschitz assumption on ¥,
there exists constants C, hmax > 0 such that

| Vi = x(te)|| < Che, @)
forallk € {0,1,--- ,N} where h € (0, hmax], tx := kh € [0, T] and
Y/H—l = )\Yn 2 (]- - )\)Zn + \Ifh(Zn),
Zn+1 = Zn - \I/—h(yn+1)>

with A € (0,1] and Yy = Zo = x(0).
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Stability of reversible ODE solvers
Although we can construct arbitrarily high order ODE reversible solvers,
we have not yet addressed the main challenge which concerns stability.

Definition (A-stability region)
Consider the following linear ODE,

y'=ay, 2)
y(0) =1,

where a € C with Re(a) < 0. A numerical solution Y = {Yy}x>¢ of (2)
is said to be A-stable at « if Y, — 0 as k — oo. The stability region is

R={ae€C : Re(a) <0 and Y = {Yy} is A-stable at a}.

The Asynchronous Leapfrog Integrator and Reversible Heun method
are not A-stable (forany a € C).
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Stability of reversible ODE solvers

Numerically computing stability regions gives some promising results:

Euler Midpoint RK3 RK4

— Original

— Reversible (A = 0.8)

| U

-3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0
Re(a) Re(a) Re(a) Re(a)

Im(a)

Figure: Stability regions for different reversible schemes (h =1 and A = 0.8).

We also see that decreasing A € (0, 1] increases the stability region.
However, if X is too small, then the backwards solve may be unstable.

Theoretically, we have only been able to find a closed-form expression
for the real part of these stability regions [7].

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025



Outline

@ Experiments

(University of Bath) Reversible solvers for NDEs 9 October 2025



Experiments

We first generate synthetic time series data {x(f;) };>o by simulating
Chandrasekhar’s white dwarf equation,

Cagy
dat
dv. 2 9 3
E__?V_(X -0)2,

where (x(0), v(0)) := (1,0).
We then train a Neural ODE using {x(t;)} to identify the above system.

In particular, we will compare against backpropagation with online
recursive checkpointing. In these examples, we will set A = 0.99.
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Experiments

Loss Time Memory
Method ) ) )
(x10™*)  (minutes)  (effective checkpoints)
Reversible 0.9 1.74+0.4 2
Checkpointing 0.9 280.0+£13.7 2
Checkpointing 0.9 30.3+1.6 4
Checkpointing 0.9 10.6+1.1 8
Checkpointing 0.9 9.6+0.6 16
Checkpointing 0.9 8.7+0.7 32
Checkpointing 0.9 5.54+0.8 44

Table: Time and memory cost incurred when training a Neural ODE to identify
Chandrasekhar’s white dwarf equation (1000 time and training steps).
Here, we apply the midpoint method and its reversible counterpart.
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Experiments

10! 4

Runtime (s)

200 400 600 800 1000
Time steps (n)
Figure: Combined runtime of a forwards solve and backpropagation through
the midpoint ODE solver over n time steps. Here, we compare against
backpropagation with online recursive checkpointing at ¢ checkpoints.
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Experiments
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Figure: Convergence of original (solid) and reversible (dashed) ODE solvers.
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Experiments

Next, we test the reversible solvers for identifying dynamics from real
system data. Specifically, we will use the two datasets from [12], which
were obtained from a coupled oscillator and chaotic double pendulum.

Loss Time Memory
(x1073) (minutes) (effective checkpoints)

Reversible 1.0+0.2 14.3+3.1

Method

Checkpointing 1.0+0.2 632.2+20.0 2
Checkpointing 1.0+0.2 99.0+10.7 4
Checkpointing 1.0+0.2 63.4+9.8 8
Checkpointing 1.0+0.2 53.8+8.8 16
Checkpointing  1.0+0.2 36.6+7.8 31

Table: Time and memory cost incurred when training a Neural ODE to identify
the dynamics of a coupled oscillator. Just as for the first experiment,
the ODE is solved using the midpoint method or its reversible version.
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Experiments

Loss Time Memory
Method ) ) ,
(x1073) (minutes) (effective checkpoints)
Reversible 83+3.2 21.9+2.1 2
Checkpointing 9.5+£2.0 818.2+21.5 2
Checkpointing 8.6+£1.9 1352+47.1 4
Checkpointing 12.8+7.4 82.8+1.2 8
Checkpointing 7.8 +1.3 70.8+3.7 16
Checkpointing 7.9+1.6 62.4+2.7 32

Table: Time and memory cost incurred when training a Neural ODE to identify
the dynamics of a chaotic double pendulum (for a short time, t € [0, 2]).
Here, the Bogacki-Shampine method is used with adaptive step sizes.
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Conclusion

e Reversible solvers have seen recent interest due to the accurate
and memory-efficient gradients that they provide during training.

® However, the current reversible ODE solvers have stability issues.
We believe that this instability is amplified by the “2A — B” terms.

e \We propose an approach in which an explicit ODE solver can be
converted to a reversible one with the same order of convergence.
Although this requires twice the function evaluations per step, we
often observe faster training times due to the memory reduction.

e The reversible solvers produce stability regions and have shown
promising empirical results — including against checkpointing.
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Ongoing work
e Implementation of our method into the ODE/SDE/CDE library
“Diffrax” (github.com/patrick-kidger/diffrax):

=] patrick-kidger / diffrax Public Q sponsor L) Notifications % Fork 158 ¢ Star 18k

<> Code (© lIssues 200 1% Pullrequests 16 () Actions [ Projects @ Security [~ Insights

AbstractReversibleSolver + ReversibleAdjoint #603 [ tow e |

BYl) sammccallum wants to merge 45 commits into patrick-kidger:dev from sammccallum:AbstractReversiblesolver (G

Q) Conversation 60 - Commits 45 E) Checks o Files changed 11 +992 -24 mmmm
=
e sammccallum commented on Mar 14 T
Re-opering #593, & patrick-kidger (m}
Implements AbstractReversiblesolver base class and ReversibleAdjoint for Assignees

reversible back propagation. No one assigned

This updates semiImplicitEuler , LeapfrogMidpoint and ReversibleHeun to subclass

AbstractReversiblesolver Labels

None yet

e Applications to fixed point systems (e.g. Deep Equilibrium Models).
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https://github.com/patrick-kidger/diffrax

Deep Equilibrium Models [13]

Given an input x € R?, a Deep Equilibrium Model (DEQ) outputs y € R¢
as the fixed point given by a neural network fp : R¢ x R? — R€. That is,

y:=2z", where Zz*=fy(z" x). (3)
Using a standard fixed point solver, the DEQ would output zy given by
Zny1 = fo(Zn,X),
with zy := 0. This looks very similar to a feedforward neural network.

However... DEQs also have an “adjoint” equation for their gradients.

(and solving this equation will enable memory-efficient training!)
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Deep Equilibrium Models [13]

Theorem (Adjoint fixed point system for DEQS)

For a scalar-valued loss function L : R® — R, we have

B Ofo(z*, )\ "
5y (L)) = (220 g

where g solves the fixed point equation

= (2T, 2

0z* 0z “)

Just as before, solving (4) leads to gradients that are memory-efficient
but approximate.

So, for accurate gradients, we propose a reversible fixed point solver.
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Reversible Deep Equilibrium Models
joint with Sam McCallum (Bath) and Kamran Arora (Bath)

Definition (Reversible Deep Equilibrium Model (RevDEQ) [14])
Let 8 € (0,2) with 8 # 1. Then we define the following iterative solver,

Y1 = (1 = B)Yn + Bfo(2n, X), )
Zny1 = (1 = B)Zn + Bfo(Yn+1,X),

where yg = 75 = 0.

The fixed point solver (5) is algebraically reversible as

_ Zn41 — Bfo(Vat1,X)

n — 1—/8 9
~ Yny1 — Bfo(Zn, Xx)
Y= TR
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Reversible Deep Equilibrium Models

Theorem (Linear convergence of RevDEQs)

Suppose that f : R¢ — R€ (s contractive. That is, there exists L € (0,1),
such that

Ify) = @) < Llly =2,

forall y,z € Ré. We define the sequence {(yn,Zn) }n>1 by Yo = 20 =0
and

Ynt1 := (1 = B)yn + Bf(zn),

(6)
Zny1 := (1 = B)zn + Bf(Ynt1),

where 3 € (0, Hll) Then, letting z* denote the unique fixed point of f,
we have

lyn = 27| < o127,

120 = 2*|| < ™1 Z"]];

foralln>1 where a := |1 — | + BL.
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Reversible Deep Equilibrium Models

Example (decoder-only transformer)

fo(zi:7, x1:7) = LN 0 ¢ 0 LN o SA(Wokv(z1.7 + X1:7)),
where
® x1.7 = (Xx1,---,x7) Is an input sequence of embeddings with x; € R4
e | Nis layer normalisation [16]

® ¢is atwo-layer neural network (MLP)
* SAis a self-attention operation with Woyy € R34%9 [17]

We set 8 = 0.5 and iterate the reversible fixed point solver until either

zn = f(za)ll2 < 1073 - ||f(zn)|]2 + 1078 or n=4.

We test this RevDEQ model on the standard Wikitext-103 dataset [18].
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Reversible Deep Equilibrium Models

Model Parameters Functllon Perplexity
Evaluations

Transformer-XL

(4 layers) [15] 139M ) 358
DEQ [13] 138M 30 32.4
RevDEQ 110M 8 23.4

Transformer-XL
(16 layers) [15] 165M ) 24.3
DEQ-TrellisNet [13] 180M 30 29.0
DEQ-Transformer [13] 172M 30 24.2
RevDEQ 169M 8 20.7

Table: Test perplexity on the Wikitext-103 dataset.
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Conclusion

e By developing numerical methods that are algebraically reversible,
we can make backpropagation memory efficient when solving:
(a) Differential Equations
(b) Fixed point problems

e In both cases, our numerical methods involve twice the function
evaluations compared to the corresponding standard methods.
Though, we often see faster training due to the memory reduction.

e For (a), the challenge for “Reversible ODEs” is numerical stability.
This motivated us to develop methods which have stability regions.

e For (b), the challenge for “Reversible DEQs” is computational cost.
We hope the improved memory efficiency will compensate for this.
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Thank you
for your attention!

and our preprints can be found at:

Sam McCallum and James Foster. Efficient, Accurate and Stable
Gradients for Neural ODEs, arxiv.org/abs/2410.11648, 2024.

Sam McCallum, Kamran Arora and James Foster. Reversible Deep
Equilibrium Models, arxiv.org/abs/2509.12917, 2025.

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025


https://arxiv.org/abs/2410.11648
https://arxiv.org/abs/2509.12917

Outline

® References

(University of Bath) Reversible solvers for NDEs 9 October 2025



References I

[4 R.T.0.Chen,Y.Rubanova, J. Bettencourt and D. Duvenaud.
Neural Ordinary Differential Equations, Neural Information
Processing Systems, 2018.

[4 J.Zhuang, N. C. Dvornek, S. Tatikonda and J. S. Duncan. MALI:
A memory efficient and reverse accurate integrator for Neural ODEs,
International Conference on Learning Representations, 2021.

[§ C.Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R.
Supekar, D. Skinner, A. Ramadhan and A. Edelman.
Universal Differential Equations for Scientific Machine Learning,
arXiv:2001.04385, 2020.

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025


https://arxiv.org/abs/2001.04385

References II

[4 A.Boral, Z. YiWan, L. Zepeda-Nufez, J. Lottes, Q. Wang, Y. Chen,
J. R. Anderson and F. Sha. Neural Ideal Large Eddy Simulation:
Modeling Turbulence with Neural Stochastic Differential Equations,
Neural Information Processing Systems, 2023.

[4 O.Zhangand Y. Chen. Path Integral Sampler: A Stochastic Control
Approach For Sampling, International Conference on Learning
Representations, 2022.

[3 A.Howe. Possible issue with ReversibleHeun solver instability,
github.com/patrick-kidger/diffrax/issues/417, 2024.

[3 S.McCallum and J. Foster. Efficient, Accurate and Stable Gradients
for Neural ODEs, arXiv:2410.11648, 2024.

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025


https://github.com/patrick-kidger/diffrax/issues/417
https://arxiv.org/abs/2410.11648

References II1

[§ W.Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever,
D. Duvenaud. NFFJORD: Free-form Continuous Dynamics for
Scalable Reversible Generative Models, International Conference
on Learning Representations, 2019.

[4 P.Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled
Differential Equations for Irregular Time Series, Neural Information
Processing Systems, 2020.

4 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
0. Grisel, M. Blondel, P. Prettenhofer, et al. Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research, 2011.

(4 A.Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam and E. Keogh. The UEA multivariate time series
classification archive, 2018, arXiv:1811.00075, 2018.

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025


https://arxiv.org/abs/1811.00075

References IV

[1 M. Schmidtand Hod Lipson. Distilling Free-Form Natural Laws from
Experimental Data, Science, vol. 324, no. 5923, 2009.

[4 S.Bai, J. Z. Kolter, V. Koltun. Deep Equilibrium Models, Neural
Information Processing Systems, 2019.

[4 S.McCallum, K. Arora and J. Foster, Reversible Deep Equilibrium
Models, arXiv:2509.12917, 2025.

[3 Z.Dai, Z.Yang, Y. Yang, J. Carbonell, Q. V. Le and R. Salakhutdinov,
Transformer-XL: Attentive Language Models Beyond a Fixed-Length
Context, Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL), 2019.

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025


https://arxiv.org/abs/2509.12917

References V

[3 J.L.Ba,J.R.Kiros and G. E. Hinton. Layer Normalization,
arXiv:1607.06450, 2016.

[4 A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A.N. Gomez, t. Kaiser and I. Polosukhin, Attention Is All You Need,
Neural Information Processing Systems, 2017.

[3 S. Merity, C. Xiong, J. Bradbury and R. Socher. Pointer sentinel
mixture models. Proceedings of the 4th International Conference
on Learning Representations (ICLR), 2016.
(uses the WikiText-103 dataset)

James Foster (University of Bath) Reversible solvers for NDEs 9 October 2025


https://arxiv.org/abs/1607.06450

Examples of reversible solvers

Turbulence modelling is computationally demanding due to the fine
mesh and steps used to approximate the PDE. A transformer-based
Neural SDE model was recently developed for such simulations [4],
and was numerically discretized using the Reversible Heun method.

3‘4: »E md

F u.- 1'-

0 A 4

Figure: PDE simulation (left), Neural SDE (middle) and Neural network (right)
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